
Kelp

Kelp Liquid Restaking Token (LRT) Review
Version: 2.1

December, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Duplicate Node Delegators Not Accounted For . 6Unexpected Amount of Supported Assets Could Increase rsETH price 7Potential For Slashing Event To Impact Mint Amounts . 8Reachable Arithmetic Overflow . 10Incomplete Interface Definition & Implementation . 11Potential Inconsistencies & Miscalculations With Asset Strategies 12Inability To Remove Supported Assets . 13Potential For Inconsistent lrtConfig Across Contracts . 14Use of Deprecated Chainlink Function . 15Miscellaneous General Comments . 16
A Test Suite 20

B Vulnerability Severity Classification 22

1

Kelp Liquid Restaking Token (LRT) Review Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Kelp smart contracts.The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Kelp smart contracts containedwithin the scopeof the security review. A summary followed by a detailed review of the discovered vulnerabilities is then givenwhich assigns each vulnerability a severity rating (seeVulnerability Severity Classification), an open/closed/resolvedstatus and a recommendation. Additionally, findings which do not have direct security implications (but are po-tentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Kelp smart contracts.

Overview

The Kelp LRT (Liquid Restaking Token) project is a liquid restaking solution on Ethereum, designed to enhancethe staking experience. It is a non-custodial protocol that allows users to stake their assets into and earn rewardswithout locking their funds, thereby maintaining liquidity.
The core components of the codebase are the following:

1. LRTConfig.sol Serves as the configuration center for the protocol. It manages the list of supported assets,their deposit limits and corresponding staking strategies.
2. LRTDepositPool.sol Handles the deposits of liquid staking tokens (LSTs) and facilitates the allocation ofassets to various node delegators. It also manages the minting of rsETH tokens.
3. LRTORacle.sol Acts as the oracle for asset prices within the ecosystem.
4. NodeDelegator.sol Manages the delegation of assets to different strategies and transferring assets back

to LRTDepositPool.sol .
5. RSETH.sol Represents the restaked ETH in the form of an ERC20 token.

Page | 2

Kelp Liquid Restaking Token (LRT) Review Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the Kelp repository and were assessed at commit 3b4e36c.
Retesting was performed on commit 2af8a04.
The list of assessed contracts is as follows.

• LRTConfig.sol
• LRTDepositPool.sol
• LRTOracle.sol
• NodeDelegator.sol
• RSETH.sol
• ChainlinkPriceOracle.sol
• LRTConfigRoleChecker.sol
• LRTConstants.sol
• UtilLib.sol

• IEigenStrategyManager.sol
• ILRTConfig.sol
• ILRTDepositPool.sol
• ILRTOracle.sol
• INodeDelegator.sol
• IPriceFetcher.sol
• IRSETH.sol
• IStrategy.sol

Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 10 issues during this assessment. Categorised by their severity:
• Medium: 2 issues.
• Low: 3 issues.
• Informational: 5 issues.

Page | 3

https://github.com/Kelp-DAO/KelpDAO-contracts
https://github.com/Kelp-Dao/KelpDAO-contracts/tree/3b4e36c740013b32b78e93b00438b25f848e5f76
https://github.com/Kelp-DAO/KelpDAO-contracts/commit/2af8a041a5b9d7a126246a7c312b1be4aa110482
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Kelp smart contracts. Eachvulnerability has a severity classification which is determined from the likelihood and impact of each issue bythe matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
LRT-01 Duplicate Node Delegators Not Accounted For Medium Resolved

LRT-02 Unexpected Amount of Supported Assets Could Increase rsETH price Medium Resolved

LRT-03 Potential For Slashing Event To Impact Mint Amounts Low Closed

LRT-04 Reachable Arithmetic Overflow Low Closed

LRT-05 Incomplete Interface Definition & Implementation Low Resolved

LRT-06 Potential Inconsistencies & Miscalculations With Asset Strategies Informational Closed

LRT-07 Inability To Remove Supported Assets Informational Closed

LRT-08 Potential For Inconsistent lrtConfig Across Contracts Informational Closed

LRT-09 Use of Deprecated Chainlink Function Informational Resolved

LRT-10 Miscellaneous General Comments Informational Closed

5

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-01 Duplicate Node Delegators Not Accounted For
Asset LRTDepositPool.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

The LRTDepositPool contract does not check for duplicate node delegator addresses when they are added to the
nodeDelegatorQueue . This could allow the same node delegator to be added multiple times. As a result, functions that
rely on this queue, such as getAssetDistributionData() , will return incorrect values, particularly for the assetLyingInNDCscalculation.
This issue can be illustrated as follows:

1. An admin mistakenly adds the same node delegator address twice to the nodeDelegatorQueue using
addNodeDelegatorContractToQueue() .

2. An asset is deposited into the LRTDepositPool .
3. The asset is transferred to the first node delegator in the queue.
4. getAssetDistributionData() is called to calculate the asset distribution, including assetLyingInNDCs .
5. Due to the duplicate entry, the calculation for assetLyingInNDCs incorrectly reflects double the real amounttransferred.

Recommendations

The testing team recommends implementing a check in addNodeDelegatorContractToQueue() to ensure a node dele-
gator address is not already present in the nodeDelegatorQueue before adding it.

Resolution

A mapping isNodeDelegator was added to check if node delegator is already present in the queue.
This issue has been addressed in commit 5ef07df.

Page | 6

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/5ef07dfad9c4809c8a4d4ba73109b3eab905bd42

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-02 Unexpected Amount of Supported Assets Could Increase rsETH price
Asset LRTDepositPool.sol, NodeDelegator.sol & LRTOracle.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

If, for any reason, the LRTDepositPool contract or the NodeDelegator contract, received an unexpected amount ofsupported assets, the rsETH price would increase.
The contract LRTDepositPool could receive intentionally (from a malicious user) or unintentionally (accidentally) an
amount of supported assets without the function depositAsset() . Also, the contract NodeDelegator could also get
an amount of supported assets without calling the function transferAssetToNodeDelegator() .
According to the function LRTOracle.updateRSETHPrice() , rsETHPrice = totalETHInPool / rsEthSupply . So, if one
of the LRTDepositPool contracts or the NodeDelegator contract receives an unexpected amount of supported assets,the rsETH price would increase. This is because when getting unexpected amount of supported assets, no new rsETHtokens minted, so the rsEthSupply would not increase. However, the total amount of supported asset would increase
and so the totalETHInPool would increase.
An attack scenario that can occur is that the first minter can maliciously manipulate the share price to take a profit fromfuture user’s deposits.
This can be done by first depositing the lowest possible amount of supported assets (1 wei) to the deposit pool, thentransferring a large amount of assets to the pool contract directly.
This will artificially inflate the share price of rsETH for future depositors.

Recommendations

Consider using a system of internal accounting to track the amount of each supported asset within the project, so thatany excess could be withdrawn.
A potential solution to the share inflation attack is implementing a decimal offset virtual shares and assets to the pool.See this link more details: Inflation Attacks With Virtual Shares And Assets
Alternatively an initial mint could also be used to mitigate the risk of this issue.

Resolution

Kelp DAO has elected to resolve this issue using an initial mint immediately after deployment.

Page | 7

https://ethereum-magicians.org/t/address-eip-4626-inflation-attacks-with-virtual-shares-and-assets/12677

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-03 Potential For Slashing Event To Impact Mint Amounts
Asset LRTDepositPool.sol & LRTOracle.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The accuracy of the rsETHPrice calculated by lrtOracle.rsETHPrice in the LRTDepositPool contract is dependent
on frequent updates via LRTOracle.updateRSETHPrice() .
There are two instances where a change in price can occur:

1. EigenLayer or staking rewards distribution
2. A mass slashing event

Currently there is no incentive for 3rd parties to call LRTOracle.updateRSETHPrice() due to gas costs.
The Kelp team’s intended approach of updating the rsETH price once or twice per day, in practice, is adequate foraccounting for price increases from staking and EigenLayer rewards, assuming EigenLayer rewards are distributed in alinear fashion similar to staking rewards throughout the year.
However it may not be timely enough to account for any mass slashing event.
If such an event occurs, minters will receive less than their fair share of rsETH until such time that
LRTOracle.updateRSETHPrice() is called.

Recommendations

Consider automatically calling updateRSETHPrice() within the getRsETHAmountToMint() function to ensure the rsETHprice is always current before minting.
Alternatively, monitor EigenLayer rewards distribution to ensure they follow similar distribution patterns as ETH stakingrewards so that, in practice, there is no profitable incentive to frontrun any reward distribution.
If the gas trade off is deemed to be not worth while for mint. Consider calling updateRSETHPrice() automatically whenimplementing future withdraw functionality, to prevent any frontrunning and potential insolvency.

Resolution

The issue was acknowledged by the project team providing the following comment as to why the issue does not needto be fixed.

Page | 8

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

"The reason we do not update exchange rate on an asset deposit is because it increases gas cost to enduser. With the slow change of LST/LRT exchange rate, we believe it is practical to rely on exchange rateupdate twice a day."

Page | 9

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-04 Reachable Arithmetic Overflow
Asset LRTConfig.sol & LRTDepositPool.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

In the LRTDepositPool contract, the function getAssetCurrentLimit() calculates the current deposit limit for an asset
by subtracting the total asset deposits (obtained from getTotalAssetDeposits()) from the deposit limit defined in
LRTConfig.depositLimitByAsset() . If the total deposits for an asset exceed the newly set deposit limit in LRTConfig ,this can lead to an arithmetic underflow.
Consider the following sequence of actions demonstrating this issue:

1. A manager sets the deposit limit for an asset to a certain value, say X .
2. Users deposit assets, filling up this limit, so the total deposited amount equals X .
3. Now, the current limit as per LRTDepositPool.getAssetCurrentLimit() is X - X = 0 . Themanager then reduces

the deposit limit for this asset to a value less than X , say X/2 .
4. A call to LRTDepositPool.getAssetCurrentLimit() tries to compute X/2 - X , resulting in an arithmetic under-flow.

Recommendations

Consider implementing a check in LRTDepositPool.getAssetCurrentLimit() to ensure that the deposit limit is not setto a value lower than the total amount already deposited for the asset.

Resolution

The issue was acknowledged by the project team.

Page | 10

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-05 Incomplete Interface Definition & Implementation
Asset IRSETH.sol & RSETH.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The interface IRSETH does not include the definitions for several functions that are implemented in the RSETH contract.Specifically, it lacks definitions for burnFrom , pause , unpause , and updateLRTConfig .
Additionally, the RSETH contract includes a burnFrom function, but the corresponding burn function is not imple-mented, so there is a mismatch between the contract and its interface.

Recommendations

Ensure that the RSETH contract either properly implements the IRSETH interface or removes the interface if it is notneeded. If the contract is meant to follow the IRSETH interface, consider implementing all functions declared in theinterface to comply with the intended design.

Resolution

The IRSETH interface was modified according to the recommendations.
This issue has been addressed in commit 5ef07df.

Page | 11

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/5ef07dfad9c4809c8a4d4ba73109b3eab905bd42

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-06 Potential Inconsistencies & Miscalculations With Asset Strategies
Asset LRTConfig.sol & NodeDelegator.sol

Status Closed: See Resolution
Rating Informational

Description

The updateAssetStrategy() function in LRTConfig allows changing the strategy for an asset.
In the current implementation the EigenLayer team have indicted that there will only be 1 strategy for each supportedasset. However, this could change in the future, either through implementing multiple strategies per asset, or havingmulti asset strategies.
Any of these changes could be a breaking change for Kelp LRT.
Multiple Strategies per Asset: In this scenario, if there are assets still in the old strategy when it is changed in KelpLRT, assets in the old strategy will not be accounted for in calculations getAssetBalance() . Which will in turn lead toinaccurate rsETH price calculations.
Multi Asset Strategies: In this scenario, there is potential for a single strategy to support multiple tokens used in KelpLRT. If this is the case, care must be taken to ensure that this strategy must not be used for across multiple tokens inKelp LRT. Otherwise, assets will be accounted for multiple times when looping through supported assets during rsETHprice updates.

Recommendations

Monitor any breaking changes from EigenLayer both in terms of multiple strategies per asset or multi asset strategies.
Ensure that strategies are not modified without a proper migration process and never using the same strategy acrossmultiple tokens respectively.

Resolution

The issue was acknowledged by the project team.

Page | 12

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-07 Inability To Remove Supported Assets
Asset LRTConfig.sol

Status Closed: See Resolution
Rating Informational

Description

The LRTConfig contract allows adding new supported assets through addNewSupportedAsset() , but there is no func-tionality to remove an asset once it is added. This limitation could pose challenges in managing the list of supportedassets, especially if an asset needs to be removed due to changes in the project’s scope or strategy.

Recommendations

Consider adding a function to remove supported assets. This addition will enhance the contract’s flexibility and adapt-ability to changing requirements.

Resolution

The issue was acknowledged by the project team.

Page | 13

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-08 Potential For Inconsistent lrtConfig Across Contracts
Asset RSETH.sol, LRTDepositPool.sol, LRTOracle.sol & NodeDelegator.sol

Status Closed: See Resolution
Rating Informational

Description

The RSETH contract contains a updateLRTConfig function that allows updating the lrtConfig address.
While LRTDepositPool , LRTOracle , and NodeDelegator also inherit a updateLRTConfig function from
LRTConfigRoleChecker , there is a risk of having different lrtConfig addresses across these contracts if theyare not updated simultaneously.
This could lead to inconsistencies, as lrtConfig acts as a central configuration point.

Recommendations

Consider implementing a management contract or mechanism that ensures simultaneous updates of the lrtConfigaddress across all relevant contracts.
Otherwise, ensure clear documentation of the process and implications of updating the lrtConfig address. Ensurethat all relevant parties are aware of the need to maintain consistency across contracts.

Resolution

The issue was acknowledged by the project team.

Page | 14

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-09 Use of Deprecated Chainlink Function
Asset ChainlinkPriceOracle.sol

Status Resolved: See Resolution
Rating Informational

Description

The ChainlinkPriceOracle contract uses the latestAnswer function from the Chainlink Aggregator Interface to fetchasset prices. This method is deprecated as per the Chainlink Data Feeds API, and its continued use may lead to com-patibility issues or lack of support in the future.

Recommendations

Consider replacing the deprecated latestAnswer() function with latestRoundData() .

Resolution

This issue has been addressed in commit b8b5bf6.

Page | 15

https://docs.chain.link/data-feeds/api-reference#latestanswer
https://github.com/Kelp-DAO/KelpDAO-contracts/commit/b8b5bf68bdb4fab51baeb5eff4ad44758671da46

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

LRT-10 Miscellaneous General Comments
Asset All contracts
Status Closed: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Strategy Defaults to Address(0)
Related Asset(s): LRTConfig.sol
Prior to updateAssetStrategy() being called, the strategy for a supported asset will be address(0), which willcause a revert when depositing assets.
Ensure that strategy is updated though updateAssetStrategy() each time a supported asset is added after ini-tialisation or when adding a new supported asset.

2. Check Return Value of depositIntoStrategy()

Related Asset(s): NodeDelegator.sol
The return value for depositIntoStrategy() is not checked.
For safety reasons it is recommended to check that the number of shares returned by the function
depositIntoStrategy() is greater than 0.

3. Potential Reversion With Large Approvals of Non-standard ERC20
Related Asset(s): NodeDelegator.sol
In the NodeDelegator contract, the maxApproveToEigenStrategyManager function approves a maximum amount
(type(uint256).max) of an ERC20 token. While this is a common pattern for convenience, certain ERC20 tokens,
like UNI and COMP, might revert when approving values higher than type(uint96).max . This behaviour stems fromtheir implementation peculiarities.
Ensure that any ERC20 tokens added to the supported list are evaluated for compatibility with large approvals.

4. Location of DEFAULT_ADMIN_ROLE Definition
Related Asset(s): LRTConfigRoleChecker.sol
In the LRTConfigRoleChecker contract, the DEFAULT_ADMIN_ROLE is defined as a constant with the value 0x00 .While this is a functional approach, it might be more maintainable and clearer to define such constants in acentralised location, particularly if they are shared across multiple contracts or are fundamental to the system’srole-based access control.
Consider moving the DEFAULT_ADMIN_ROLE constant to LRTConstants.sol . This can improve codemaintainabilityand readability, especially for constants that are fundamental to the system’s architecture.

5. Prefer Use of safeTransfer() Over transfer()

Related Asset(s): LRTDepositPool.sol & NodeDelegator.sol
In the LRTDepositPool and NodeDelegator contracts, using the transfer() and transferFrom() functions for
ERC-20 tokens may not be the safest approach. While the transfer() function is a part of the ERC-20 standard,it does not always guarantee that the transfer will be successful, especially if the token contract does not follow

Page | 16

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

the ERC-20 standard perfectly. In some cases, the transfer() function might not revert on failure, leading to afalse assumption of a successful transaction.
Consider replacing the transfer function with safeTransfer() and safeTransferFrom() from OpenZeppelin’s
SafeERC20 library. This provides additional checks that ensure the transfer was successful.

6. High Centralisation Risk
Related Asset(s): LRTConfig.sol
The LRTConfig contract allows changing the rsETH address through its setter function. This capability presentsa high centralisation risk, as it gives significant power to the admin.
Thoroughly review the necessity of allowing the rsETH address to be updated after initialisation. If it’s crucial forupgradeability or administrative purposes, clearly document the rationale and ensure robust security measures.

7. Lack of Synchrony when Adding a New Token
Related Asset(s): LRTConfig.sol
Function getLSTToken() and setToken() appear to pose as helper functions for external applications or end
users to get the address of supported tokens based on bytes32 identifier on LRTConstants (i.e., R_ETH_TOKEN ,
ST_ETH_TOKEN , and CB_ETH_TOKEN).
However, there is a disconnect with the function addNewSupportedAsset() . In the function initialize() ,
_setToken() and _addNewSupportedAsset() are called subsequently with preset values, so the resulting val-
ues are synchronous. If a new token is added, the functions addNewSupportedAsset() and setToken() need tobe called separately by different roles, allowing conflicting updates.
Furthermore, new tokens other than the preset tokens will have no values in LRTConstants . This can be a consid-eration whether the bytes32 identifier should be taken off LRTConstants so it can be flexibly added or removed.
Consider bundling all necessary actions in one call when adding a new token to minimise potential mistakes.

8. Zero Key Provides Default Value
Related Asset(s): LRTConfig.sol
Function _setToken() and _setContract() allow the input key to be zero. If a value is set with zero key, thenaccording to the current behaviour of function calling in Solidity, the getter will return the corresponding valuewhen the user does not set any input on it (i.e., an empty byte as input).
Make sure this behaviour is understood. Consider preventing zero key on _setToken() and _setContract() if
return values with zero or empty byte input of getLSTToken() and getContract() are undesirable.

9. Initial Value of rsETHPrice

Related Asset(s): LRTOracle.sol
Function updatePriceOracleFor() must be called at least once to initialise rsETHPrice to a non-zero
value. If the value of rsETHPrice is zero, then function LRTDepositPool.depositAsset() will revert with
division or modulo by 0 .
Consider setting rsETHPrice to initial value either during initialisation or in the variable definition.

10. Check for Nonzero Balance
Related Asset(s): NodeDelegator.sol
Function depositAssetIntoStrategy() deposits the contract’s token balance into EigenLayer’s StrategyManagercontract. This function is callable even if the balance is zero. If this occurs, the gas would be wasted.
Consider checking that the balance is more than zero before proceeding.

11. Lack of Event Emission

Page | 17

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

(a) Related Asset(s): NodeDelegator.sol
In the NodeDelegator contract, the transferBackToLRTDepositPool() function, being state-changing,should ideally emit an event to ensure transparency and traceability of its actions on the blockchain.
Consider modifying the transferBackToLRTDepositPool() function to emit an event whenever it success-fully changes the state.

(b) Related Asset(s): LRTConfig.sol
Function updateAssetStrategy() is a state-changing function. The current implementation does not emitany event.
Consider emitting an event for better traceability and visibility.

12. Redundant Function Override
Related Asset(s): RSETH.sol
In the RSETH contract, the function updateLRTConfig() is overridden, but it appears to have the same function-
ality as updateLRTConfig() in the LRTConfigRoleChecker contract, which RSETH inherits from.
This redundancy might be unnecessary unless there is a specific requirement for different access controls oradditional functionality in RSETH .
If the updateLRTConfig() function in RSETH does not add any new functionality or change the accesscontrol mechanism, consider removing this override to reduce redundancy. The inherited function from
LRTConfigRoleChecker should suffice.

13. Gas Efficiency in Zero Address Check
Related Asset(s): UtilLib.sol
The UtilLib library contains a function checkNonZeroAddress , used to validate that an address is not the zeroaddress. While this is a common and necessary check in smart contracts, the current implementation using high-level Solidity may not be the most gas-efficient approach. There’s an opportunity to optimise this check by usinginline assembly.
Consider implementing the zero address check using Solidity inline assembly. Assembly can be more gas-efficientas it allows for lower-level manipulation of the EVM.

14. Incorrect Parameter Description in the initialize() Function
Related Asset(s): LRTConfig.sol
In the initialize() function of the LRTConfig contract, the parameter for rsETH is mistakenly described as
cbETH address in the comment on line [40].
/// @param rsETH_ cbETH address

Correct the parameter description to accurately reflect that rsETH_ is the rsETH address , not cbETH address .This change will improve the clarity and accuracy of the code documentation.
15. Overlapping Getter Functions

Related Asset(s): LRTConfig.sol
The contract LRTConfig has public state variables tokenMap and contractMap that automatically generate
getter functions due to their public visibility. However, the contract also explicitly defines getter functions
getLSTToken(bytes32 tokenKey) and getContract(bytes32 contractKey) which essentially serve the same pur-pose. This redundancy can lead to confusion and is not efficient in terms of contract design.
Consider removing the explicit getter functions getLSTToken() and getContract() to rely on the automatically
generated getters for the public variables tokenMap and contractMap . This will streamline the contract, reducingredundancy and potential confusion.

Page | 18

Kelp Liquid Restaking Token (LRT) Review Detailed Findings

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team’s responses to the raised issues above are as follows.

1. Strategy Defaults to Address(0): depositAssetIntoStrategy() will revert with appropriate revert message whenstrategy is address(0). This issue has been addressed in commit 2af8a04.

Page | 19

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/2af8a041a5b9d7a126246a7c312b1be4aa110482

Kelp Liquid Restaking Token (LRT) Review Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside this document.The forge framework was used to perform these tests and the output is given below.
Running 1 test for test/Basic.t.sol:BasicTest
[PASS] test_VariablesWork() (gas: 2246)
Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 7.29ms

Running 5 tests for test/NodeDelegator.t.sol:NodeDelegatorTest
[PASS] test_VariablesWork() (gas: 2279)
[PASS] test_depositAssetIntoStrategy_integration() (gas: 4183607)
[PASS] test_maxApproveToEigenStrategyManager() (gas: 852678)
[PASS] test_pause_unpause() (gas: 49634)
[PASS] test_transferBackToLRTDepositPool() (gas: 1804616)
Test result: ok. 5 passed; 0 failed; 0 skipped; finished in 44.73ms

Running 2 tests for test/UtilLib.t.sol:UtilLibTest
[PASS] test_VariablesWork() (gas: 2246)
[PASS] test_checkNonZeroAddress(address) (runs: 10000, u: 5752, ~: 5752)
Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 692.49ms

Running 8 tests for test/LRTConfig.t.sol:LRTConfigTest
[PASS] testFail_updateAssetDepositLimit_lessAmountThanDeposited() (gas: 262831)
[PASS] test_VariablesWork() (gas: 2246)
[PASS] test_addNewSupportedAsset(address,uint256,uint256) (runs: 10000, u: 117340, ~: 118083)
[PASS] test_setContract(bytes32,address) (runs: 10000, u: 89284, ~: 89284)
[PASS] test_setContractAndUpdateValue(bytes32,address,address) (runs: 10000, u: 58140, ~: 58142)
[PASS] test_setRSETH(address) (runs: 10000, u: 25811, ~: 25811)
[PASS] test_setToken(bytes32,address) (runs: 10000, u: 89337, ~: 89339)
[PASS] test_updateAssetStrategy(uint8,address,address) (runs: 10000, u: 40557, ~: 40557)
Test result: ok. 8 passed; 0 failed; 0 skipped; finished in 6.20s

Running 6 tests for test/LRTOracle.t.sol:LRTOracleTest
[PASS] test_Unexpected_asset_PriceImpact_PoC() (gas: 299341)
[PASS] test_VariablesWork() (gas: 2246)
[PASS] test_getAssetPrice(uint256) (runs: 10000, u: 44552, ~: 44764)
[PASS] test_updatePriceOracleFor(address) (runs: 10000, u: 52283, ~: 52283)
[PASS] test_updateRSETHPrice(uint256) (runs: 10000, u: 568166, ~: 568166)
[PASS] test_updateRSETHPrice_zeroValue() (gas: 509663)
Test result: ok. 6 passed; 0 failed; 0 skipped; finished in 19.87s

Running 3 tests for test/ChainlinkPriceOracle.t.sol:ChainlinkPriceOracle
[PASS] test_VariablesWork() (gas: 2246)
[PASS] test_getAssetPrice(uint8) (runs: 10000, u: 47336, ~: 47336)
[PASS] test_updatePriceFeedFor(uint8,address) (runs: 10000, u: 53238, ~: 53238)
Test result: ok. 3 passed; 0 failed; 0 skipped; finished in 19.87s

Running 5 tests for test/WETH9.t.sol:WETH9Test
[PASS] test_VariablesWork() (gas: 2268)
[PASS] test_deposit(uint256) (runs: 10000, u: 42645, ~: 44561)
[PASS] test_deposit_withdraw(uint256,uint256) (runs: 10000, u: 54437, ~: 55695)
[PASS] test_transfer(uint256,uint256) (runs: 10000, u: 73069, ~: 75302)
[PASS] test_transferFrom(uint256,uint256) (runs: 10000, u: 88242, ~: 90105)
Test result: ok. 5 passed; 0 failed; 0 skipped; finished in 19.87s

Running 9 tests for test/RSETH.t.sol:RSETHTest
[PASS] test_VariablesWork() (gas: 2268)
[PASS] test_burnFrom_noBalance(address,uint256) (runs: 10000, u: 27841, ~: 27842)
[PASS] test_mint_burn(uint256,uint256) (runs: 10000, u: 75511, ~: 75683)
[PASS] test_mint_burnFrom(address,uint256,uint256) (runs: 10000, u: 85815, ~: 86747)
[PASS] test_mint_burnFrom_pause_unpause(address,uint256,uint256,bool,bool) (runs: 10000, u: 93765, ~: 95685)
[PASS] test_mint_notMinter(address,address,uint256) (runs: 10000, u: 52308, ~: 52312)
[PASS] test_pause_unpause() (gas: 49694)
[PASS] test_updateLRTConfig(address) (runs: 10000, u: 28581, ~: 28581)
[PASS] test_upgrade() (gas: 1399897)
Test result: ok. 9 passed; 0 failed; 0 skipped; finished in 62.46s

Page | 20

Kelp Liquid Restaking Token (LRT) Review Test Suite

Running 14 tests for test/LRTDepositPool.t.sol:LRTDepositPoolTest
[PASS] testFail_addNodeDelegatorContractToQueue_sameNode_twice_PoC() (gas: 390445)
[PASS] testFail_mintWithPriceChange_updateRSETHPrice() (gas: 326485)
[PASS] testFail_mintWithStakerRewards_updateRSETHPrice() (gas: 1440228)
[PASS] test_VariablesWork() (gas: 2246)
[PASS] test_addNodeDelegatorContractToQueue(uint256) (runs: 10000, u: 4734067, ~: 4539578)
[PASS] test_assets_using_same_strategy() (gas: 639328)
[PASS] test_depositAsset(uint256) (runs: 10000, u: 439156, ~: 439158)
[PASS] test_deposit_with_node_delegator(uint256) (runs: 10000, u: 1651591, ~: 1651591)
[PASS] test_getRsETHAmountToMint_depositAsset() (gas: 519213)
[PASS] test_getRsETHAmountToMint_initial() (gas: 87749)
[PASS] test_multiple_node_delegator() (gas: 984008)
[PASS] test_pause_unpause() (gas: 49624)
[PASS] test_transferAssetToNodeDelegator() (gas: 1701151)
[PASS] test_updateMaxNodeDelegatorCount(uint256) (runs: 10000, u: 39782, ~: 39963)
Test result: ok. 14 passed; 0 failed; 0 skipped; finished in 61.17s

Page | 21

Kelp Liquid Restaking Token (LRT) Review Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 22

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Duplicate Node Delegators Not Accounted For
	Unexpected Amount of Supported Assets Could Increase rsETH price
	Potential For Slashing Event To Impact Mint Amounts
	Reachable Arithmetic Overflow
	Incomplete Interface Definition & Implementation
	Potential Inconsistencies & Miscalculations With Asset Strategies
	Inability To Remove Supported Assets
	Potential For Inconsistent lrtConfig Across Contracts
	Use of Deprecated Chainlink Function
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

