
KELP DAO

LRT – Smart Contract Updates
Security Assessment Report

Version: 2.0

June, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Scope . 3Approach . 3Coverage Limitations . 3Findings Summary . 3
Detailed Findings 5

Summary of Findings 6Incorrect Accounting for stakedButUnverifiedNativeETH . 7
Checks-Effects-Interactions Pattern Violations In NodeDelegator 9No Checks on LST Price Oracles . 11Denial-of-Service Condition in getETHEigenPodBalance() Due To Overflow 12High Churn Rate Due To Arbitrage . 13Unimplemented receive() Functions in Unstaking Adapters . 14Use of General receive() Functions is Discouraged . 15Gas Optimisations . 16Miscellaneous General Comments . 17

A Test Suite 19

B Vulnerability Severity Classification 22

1

LRT – Smart Contract Updates Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the KELP DAO smart con-tract updates. The review focused solely on the security aspects of the Solidity implementation of the contract,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the KELP DAO smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the KELP DAO smart contract updates.

Overview

The Kelp DAO LRT (Liquid Restaking Token) project is a liquid restaking solution on Ethereum, designed to en-hance the staking experience. It is a non-custodial protocol, which allows users to stake their assets and earnrewards without locking their funds, thereby maintaining liquidity.

Page | 2

LRT – Smart Contract Updates Security Assessment Summary

Security Assessment Summary

Scope

The scope of this time-boxed review was strictly limited to new contracts and changes to existing contracts,implemented at commits 7db0e43 since ed6fa16.
Retesting activities were performed on commit 43da3e4
Note: third party libraries and dependencies, such as OpenZeppelin, were excluded from the scope of this assessment.

Approach

The review was conducted on the files hosted on the KELP DAO repository, focusing on changes as pered6fa16..7db0e43 commit diff.
The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout).
Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibilityspecifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team also utilised the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Coverage Limitations

Due to a time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary

The testing team identified a total of 9 issues during this assessment. Categorised by their severity:

Page | 3

https://github.com/Kelp-DAO/KelpDAO-contracts/tree/7db0e4373ce0bfdbf5dde993a6cf5bfd52652fcd
https://github.com/Kelp-DAO/KelpDAO-contracts/tree/ed6fa169c9f87df4eb4a241f2147961d673517e6
https://github.com/Kelp-DAO/KelpDAO-contracts/commit/43da3e448d117a1e68ce93f7a53107afa712b76a
https://github.com/Kelp-DAO/KelpDAO-contracts
https://github.com/Kelp-DAO/KelpDAO-contracts/compare/ed6fa169c9f87df4eb4a241f2147961d673517e6..7db0e4373ce0bfdbf5dde993a6cf5bfd52652fcd
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

LRT – Smart Contract Updates Findings Summary

• High: 1 issue.
• Medium: 2 issues.
• Low: 2 issues.
• Informational: 4 issues.

Page | 4

LRT – Smart Contract Updates Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the KELP DAO smart contractupdates. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
KLP2-01 Incorrect Accounting for stakedButUnverifiedNativeETH High Resolved

KLP2-02 Checks-Effects-Interactions Pattern Violations In NodeDelegator Medium Resolved

KLP2-03 No Checks on LST Price Oracles Medium Resolved

KLP2-04 Denial-of-Service Condition in getETHEigenPodBalance() Due To Over-flow Low Resolved

KLP2-05 High Churn Rate Due To Arbitrage Low Closed

KLP2-06 Unimplemented receive() Functions in Unstaking Adapters Informational Closed

KLP2-07 Use of General receive() Functions is Discouraged Informational Resolved

KLP2-08 Gas Optimisations Informational Resolved

KLP2-09 Miscellaneous General Comments Informational Resolved

6

LRT – Smart Contract Updates Detailed Findings

KLP2-01 Incorrect Accounting for stakedButUnverifiedNativeETH
Asset NodeDelegator.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

stakedButUnverifiedNativeETH does not take into account an effective balance of the validator at the time of calcu-lation, which may result in inaccurate accounting.
stakedButUnverifiedNativeETH in NodeDelegator describes the amount of ETH that is staked on EigenLayer, but that
has not yet been verified and, as such, will not be reflected in eigenPodManager.podOwnerShares() . This is usedto ensure that accounting is correct during this time and all of the protocol’s assets are accounted for. To do this,
stakedButUnverifiedNativeETH is incremented by 32 ETH when stake32ETH() is called, and is decremented againafter verification.
NodeDelegator.sol

162 IEigenPodManager eigenPodManager = IEigenPodManager(lrtConfig.getContract(LRTConstants.EIGEN_POD_MANAGER));
eigenPodManager.stake{ value: 32 ether }(pubkey, signature, depositDataRoot);

164

// tracks staked but unverified native ETH
166 stakedButUnverifiedNativeETH += 32 ether;

However, stakedButUnverifiedNativeETH is subtracted by the effective balance of the validator, not 32 ETH. Thispresents an edge case where a validator may have an effective balance lower than 32 ETH during verification.
This would result in stakedButUnverifiedNativeETH containing some left-over ETH, which is counted towards the pro-tocols funds, but is not actually owned by the protocol, resulting in inaccurate accounting and an incorrect rsETH price.
NodeDelegator.sol

226 eigenPod.verifyWithdrawalCredentials(
oracleTimestamp, stateRootProof, validatorIndices, withdrawalCredentialProofs, validatorFields

228);

230 uint256 totalVerifiedEthGwei = 0;
for (uint256 i = 0; i < validatorFields.length;) {

232 // TODO: Handle case when effective balance goes below 32 eth
// in case of validator with extra stakes, this will count 32 eth as that is max effective balance

234 uint64 validatorCurrentBalanceGwei = BeaconChainProofs.getEffectiveBalanceGwei(validatorFields[i]);
totalVerifiedEthGwei += validatorCurrentBalanceGwei;

236 unchecked {
++i;

238 }
}

240 // reduce the eth amount that is verified
stakedButUnverifiedNativeETH -= (totalVerifiedEthGwei * LRTConstants.ONE_E_9);

Page | 7

LRT – Smart Contract Updates Detailed Findings

Recommendations

Modify the accounting calculation of stakedButUnverifiedNativeETH to ensure it represents correct balances at alltimes.

Resolution

The logic in verifyWithdrawalCredentials() has been modified to subtract 32 ETH for every verified validator, asseen in commit bcb6193.

Page | 8

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/bcb6193226936db89996341fd7712368c2475572

LRT – Smart Contract Updates Detailed Findings

KLP2-02 Checks-Effects-Interactions Pattern Violations In NodeDelegator

Asset NodeDelegator.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

NodeDelegator implements several functions that violate the Checks-Effects-Interactions (CEI) pattern.
Most notably in stake32Eth() on line [163], the EigenLayer contract gets control of the execution flow while the Kelpcontracts are in an intermediate state.
Specifically, the rsETH price invariant is broken - 32 ETH has left the Kelp contracts but stakedButUnverifiedNativeETH
has not yet been increased. This means that the EigenLayer contracts, or any sub-call, could call updateRSETHPrice()and get an incorrect rsETH price. Deposits and withdrawals could then be made assuming this incorrect price, leadingto protocol losses:
NodeDelegator.sol

153 function stake32Eth(
bytes calldata pubkey,

155 bytes calldata signature,
bytes32 depositDataRoot

157)
external

159 whenNotPaused
onlyLRTOperator

161 {
IEigenPodManager eigenPodManager = IEigenPodManager(lrtConfig.getContract(LRTConstants.EIGEN_POD_MANAGER));

163 eigenPodManager.stake{ value: 32 ether }(pubkey, signature, depositDataRoot);

165 // tracks staked but unverified native ETH
stakedButUnverifiedNativeETH += 32 ether;

167

emit ETHStaked(pubkey, 32 ether);
169 }

Other functions where CEI violations occur:
• stake32EthValidated() on line [196]
• verifyWithdrawalCredentials() on line [226]
• completeUnstaking() on line [345]

Recommendations

Restructure the functions in question to follow the Checks-Effects-Interactions pattern.

Page | 9

LRT – Smart Contract Updates Detailed Findings

Resolution

The development team has restructured the code where relevant, as seen in 0534d17.

Page | 10

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/0534d1733af9a75c2e59227ffb1747fbbd075546

LRT – Smart Contract Updates Detailed Findings

KLP2-03 No Checks on LST Price Oracles
Asset contracts/oracles/*

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

No checks are performed on Liquid Staking Token (LST) rates returned by LST price oracles.
SwETHPriceOracles.sol

34 function getAssetPrice(address asset) external view returns (uint256) {
if (asset != swETHAddress) {

36 revert InvalidAsset();
}

38

return ISwETH(swETHAddress).getRate();
40 }

The LST price oracles are responsible for providing the price of an LST against ETH. To do this, the LST’s getRate()function is called. However, no checks are performed on the returned rate, which may expose the Kelp protocolto considerable integration risk, especially considering that some of the LSTs are upgradeable (such as swETH) and
the repricing of the LSTs is often controlled by an EOA. Fully trusting the getRate() function of an LST significantlyincreases the attack surface of the Kelp protocol.
Several basic measures can be taken to mitigate this risk:

• A reasonable upper and lower bound can be placed on the returned rate;
• The function call can be wrapped in a try-catch block to prevent forced reverts;
• This could be combined with a fallback value which is used in case of revert, such as the previous rate.

Recommendations

Ensure the above comments are understood and consider implementing the measures outlined above.

Resolution

The development team has mitigated the issue regarding rate manipulation by placing guards on the rate of changeof the rsETH price in LRTOracle.sol . The development team has opted to close the aspect regarding forced reverts.These changes can be seen in PR #17.

Page | 11

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/17/commits

LRT – Smart Contract Updates Detailed Findings

KLP2-04 Denial-of-Service Condition in getETHEigenPodBalance() Due To Overflow
Asset NodeDelegator.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

There is an edge case in getETHEigenPodBalance() in NodeDelegator.sol where nativeEthShares is negative and
-nativeEthShares > stakedButUnverifiedNativeETH .
This would cause an overflow on line [530] and revert. As a result, several functions could become unavailable forexecution, causing a Denial-of-Service (DoS) condition. Most notably, _beforeDeposit() and updateRSETHPrice()would both no longer be executable.
NodeDelegator.sol

529 return nativeEthShares < 0
? stakedButUnverifiedNativeETH - uint256(-nativeEthShares)

531 : stakedButUnverifiedNativeETH + uint256(nativeEthShares);

Since it is unlikely for this edge case to occur, the testing team rates this issue as low likelihood.

Recommendations

Add extra logic to handle the case where -nativeEthShares > stakedButUnverifiedNativeETH .

Resolution

The development team has fixed the issue as seen in commit 03551e7.

Page | 12

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/03551e758fd4e65396d184bda7794750384c9846

LRT – Smart Contract Updates Detailed Findings

KLP2-05 High Churn Rate Due To Arbitrage
Asset contracts/*

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The redemption rates are used to price assets. This has shown to not always equal the market price as LSTs can tradeboth above and below their redemption rate for extended periods of time.
This means that the rsETH protocol can be used for arbitrages: a below peg asset can be deposited at peg rate and canbe withdrawn for any other asset in order to turn a profit.
Such market conditions would cause a lot of churn, assets would constantly be deposited and withdrawn. In turn, thismay lower capital efficiency since assets would have to be deposited andwithdrawn from EigenLayer instead of earningrewards.

Recommendations

One way to mitigate this partially is by charging a fee to deposit and withdraw. This would discourage small arbitragesby making them unprofitable. As depositing and withdrawing is currently free, even small and temporary depegs maytrigger arbitrages.
Another mitigation would be to use the currently implemented deposit limits. If an asset were to have a larger depegevent, its deposit limits could be lowered to limit the arbitrage possibilities. This would also defend the value of rsETHand ensure it does not drop too much with the depegged asset.

Resolution

The development team has opted the above issue with the following statement:

"We have a minimum withdrawal delay of 7 days, which should discourage this. On top of that we are going to
charge a fee soon."

Page | 13

https://dune.com/queries/1933584/3189420

LRT – Smart Contract Updates Detailed Findings

KLP2-06 Unimplemented receive() Functions in Unstaking Adapters
Asset UnstakeStETH.sol, UnstakeSwETH.sol
Status Closed: See Resolution
Rating Informational

Description

The unstaking adapters UnstakeStETH and UnstakeSwETH do not implement the receive() and onERC721Received()
functions that are required to unstake stETH and swETH .
This is not an issue currently as the inheriting contract LRTConverter implements these. However, if these contractsare used elsewhere in the future, this could lead to significant loss of funds.

Recommendations

Consider implementing the required receive() functions in the unstaking contracts themselves. Alternatively, add a
comment in UnstakeStETH and UnstakeSwETH that mentions these functions must be implemented in the inheritingcontracts.

Resolution

The development team has opted to close this issue.

Page | 14

LRT – Smart Contract Updates Detailed Findings

KLP2-07 Use of General receive() Functions is Discouraged
Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

In several locations, general receive() functions are used. It is recommended to use more specific receive functions.
For example, instead of:
receive() external payable {}
(bool sent,) = payable(withdrawalManager).call{ value: amount }("")

it is recommended to use:
function receiveFromUnstakingVault() external payable override {}
withdrawalManager.receiveFromUnstakingVault{value: amount}()

Some of the advantages to these more specific functions are:
• More readable and verbose. It shows who the intended sender is and what the intent of the transfer is;
• Avoids accidental ETH transfers from users. This is especially important for contracts such as

LRTDepositPool.sol ;
• Extra access control could potentially be placed on these functions. For example: msg.sender must equal

unstakingVault in receiveFromUnstakingVault() .

Certain receive{} functions can of course not be replaced. For example, EigenLayer will send ETH to the receive()function.

Recommendations

Review code in question and make alterations as deemed applicable.

Resolution

The development team has fixed the issue by implementing specific receive functions, as seen in 9248e7b.

Page | 15

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/9248e7b02665053a209100f3bbb1cf4394a91273

LRT – Smart Contract Updates Detailed Findings

KLP2-08 Gas Optimisations
Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

Some areas of the protocol could be altered to save gas:

1. _unlockWithdrawalRequests() in LRTWithdrawalManager reads nextLockedNonce[asset] several times. In order
to save gas, nextLockedNonce[asset] could be cached in a memory variable.

2. Similarly, nextUnusedNonce[asset] in _addUserWithdrawalRequest() could be cached.
3. Use == instead of <= in the function NodeDelegator._sendRewardsToRewardReceiver() in line [509].
4. EthXPriceOracle.getAssetPrice() performs two external calls every time it is called. This is to ensure that the

given argument asset equals the expected address of ETHx. Consider performing these calls during initialisationand caching the address in storage to save gas.
function getAssetPrice(address asset) external view returns (uint256) {

address staderConfigProxyAddress = IETHXStakePoolsManager(ethXStakePoolsManagerProxyAddress).staderConfig();

if (asset != IStaderConfig(staderConfigProxyAddress).getETHxToken()) {
revert InvalidAsset();

}

return IETHXStakePoolsManager(ethXStakePoolsManagerProxyAddress).getExchangeRate();
}

Recommendations

Review code in question and make alterations as deemed applicable.

Resolution

The development team has implemented the above suggestions in commits 3317d36, 3a96c73, d0115d2 and 0051020respectively.

Page | 16

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/3317d36b7f9a014bd375f6a10b82da2c7da0c881
https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/3a96c7367f3f8b33740ba415486ddcb78ffbdc24
https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/d0115d2b8014717d5b556a8a8b963eab3862f872
https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/0051020fa249b441f7f0de9993a7778261ddae25

LRT – Smart Contract Updates Detailed Findings

KLP2-09 Miscellaneous General Comments
Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Unused Variables
Related Asset(s): LRTConverter.sol

• conversionLimit in LRTConverter and its associated functionality is unused and can be removed.
• processedWithdrawalRoots in LRTConverter is unused and can be removed. If the storage layout must

be maintained for later upgrades, consider renaming the variable (e.g.: _legacyProcessedWithdrawalRoots)instead to increase readability.
2. Inconsistent Function Name

Related Asset(s): LRTConverter.sol, LRTWithdrawalManager.sol

• The functions claimStEth() and claimSwEth() are not intended for claiming stETH and swETH, but insteadfor claiming ETH.
• setMinAmountToWithdraw() seems to indicate that it would set the minimum amount of an asset a user isallowed to withdraw. However, it actually sets the minimum amount of rsETH that can be withdrawn.

Consider renaming these functions to better describe their functionalities.
3. Incorrect Contract Documentation

Related Asset(s): LRTConverter.sol
The contract documentation
/// @title LRTConverter - Converts eigenlayer deployed LSTs to rsETH
/// @notice Handles eigenlayer deposited LSTs to rsETH conversion

does not match the contract functionalities.
Consider revising the documentation to better describe the functionalities of the contract.

4. Duplicate Definition
Related Asset(s): FeeReceiver.sol
FeeReceiver defines a constant MANAGER that is equal to the one defined in LRTConstants.sol . Consider delet-ing the definition in FeeReceiver.sol and referring to the one in LRTConstants.sol to ensure consistency.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.
Page | 17

LRT – Smart Contract Updates Detailed Findings

Resolution

The development team has fixed these issues in commits 1b968ee and 386862b.

Page | 18

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/1b968eefa877c4fad29295845c228b3571e7f70e
https://github.com/Kelp-DAO/KelpDAO-contracts/pull/13/commits/386862b45f389a207bcd0ba83b6653b206f06173

LRT – Smart Contract Updates Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The forge framework was used to perform these tests and the output is given below.

Ran 1 test for test/KELP.t.sol:KelpTest
[PASS] test_initialize() (gas: 17965)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 8.65ms (45.21µs CPU time)

Ran 1 test for test/OneETHPriceOracle.t.sol:OneETHPriceOracleTest
[PASS] test_getAssetPrice() (gas: 14814)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 9.00ms (95.13µs CPU time)

Ran 3 tests for test/SwETHPriceOracle.t.sol:SwETHPriceOracleTest
[PASS] test_getAssetPrice() (gas: 20026)
[PASS] test_getAssetPrice_invalidAsset() (gas: 17769)
[PASS] test_initialize() (gas: 14881)
Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 9.25ms (81.96µs CPU time)

Ran 5 tests for test/RSETHPriceFeed.t.sol:RSETHPriceFeedTest
[PASS] test_decimals() (gas: 10531)
[PASS] test_getRoundData() (gas: 15224)
[PASS] test_initialize() (gas: 11556)
[PASS] test_latestRoundData() (gas: 14816)
[PASS] test_version() (gas: 10525)
Suite result: ok. 5 passed; 0 failed; 0 skipped; finished in 9.93ms (588.58µs CPU time)

Ran 3 tests for test/SfrxETHPriceOracle.t.sol:SfrxETHPriceOracleTest
[PASS] test_getAssetPrice() (gas: 19949)
[PASS] test_getAssetPrice_invalidAsset() (gas: 17703)
[PASS] test_initialize() (gas: 14892)
Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 9.54ms (82.04µs CPU time)

Ran 17 tests for test/LRTConfig.t.sol:LRTConfigTest
[PASS] test_addNewSupportedAsset() (gas: 97247)
[PASS] test_addNewSupportedAsset_existingAsset() (gas: 96636)
[PASS] test_addNewSupportedAsset_onlyDefaultAdmin() (gas: 49864)
[PASS] test_initialize() (gas: 37234)
[PASS] test_setContract() (gas: 44308)
[PASS] test_setContract_ValueAlreadyInUse() (gas: 23058)
[PASS] test_setContract_onlyDefaultAdmin() (gas: 47840)
[PASS] test_setRSETH() (gas: 25959)
[PASS] test_setRSETH_onlyDefaultAdmin() (gas: 47686)
[PASS] test_setToken() (gas: 44208)
[PASS] test_setToken_ValueAlreadyInUse() (gas: 22980)
[PASS] test_setToken_onlyDefaultAdmin() (gas: 47797)
[PASS] test_updateAssetDepositLimit() (gas: 32924)
[PASS] test_updateAssetDepositLimit_onlyManager() (gas: 49874)
[PASS] test_updateAssetDepositLimit_onlySupportedAssets() (gas: 22947)
[PASS] test_updateAssetStrategy() (gas: 47197)
[PASS] test_updateAssetStrategy_onylDefaultAdmin() (gas: 49934)
Suite result: ok. 17 passed; 0 failed; 0 skipped; finished in 10.78ms (948.46µs CPU time)

Ran 13 tests for test/FeeReceiver.t.sol:FeeReceiverTest
[PASS] test_initialize() (gas: 38623)
[PASS] test_sendFunds() (gas: 78805)
[PASS] test_sendFunds_depositPoolFail() (gas: 72875)
[PASS] test_sendFunds_treasuryFail() (gas: 58053)
[PASS] test_setDepositPool() (gas: 28648)
[PASS] test_setDepositPool_onlyManager() (gas: 49387)
[PASS] test_setDepositPool_zeroAddress() (gas: 20684)
[PASS] test_setProtocolFeePercentage() (gas: 26629)
[PASS] test_setProtocolFeePercentage_onlyManager() (gas: 47620)
[PASS] test_setProtocolFeePercentage_zeroFee() (gas: 20532)
[PASS] test_setProtocolTreasury() (gas: 28691)
[PASS] test_setProtocolTreasury_onlyManager() (gas: 49388)

Page | 19

LRT – Smart Contract Updates Test Suite

[PASS] test_setProtocolTreasury_zeroAddress() (gas: 20618)
Suite result: ok. 13 passed; 0 failed; 0 skipped; finished in 11.94ms (1.89ms CPU time)

Ran 3 tests for test/RETHPriceOracle.t.sol:RETHPriceOracleTest
[PASS] test_getAssetPrice() (gas: 19971)
[PASS] test_getAssetPrice_invalidAsset() (gas: 17725)
[PASS] test_initialize() (gas: 14914)
Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 2.94ms (84.75µs CPU time)

Ran 4 tests for test/UtilLib.t.sol:UtilLibTest
[PASS] test_checkNonZeroAddress() (gas: 5629)
[PASS] test_checkNonZeroAddress_zero() (gas: 8460)
[PASS] test_getMax() (gas: 6637)
[PASS] test_getMin() (gas: 6550)
Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 6.00ms (208.96µs CPU time)

Ran 3 tests for test/EthXPriceOracle.t.sol:EthXPriceOracleTest
[PASS] test_getAssetPrice() (gas: 22069)
[PASS] test_getAssetPrice_invalidAsset() (gas: 20204)
[PASS] test_initialize() (gas: 14881)
Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 22.00ms (431.58µs CPU time)

Ran 18 tests for test/NodeDelegator.t.sol:NodeDelegatorTest
[PASS] testFail_receive_send() (gas: 17129)
[PASS] testFail_receive_transfer() (gas: 16980)
[PASS] test_activateRestaking_onlyManager() (gas: 30504)
[PASS] test_createEigenPod() (gas: 243349)
[PASS] test_delegateTo() (gas: 70897)
[PASS] test_delegateTo_onlyManager() (gas: 31768)
[PASS] test_depositAssetIntoStrategy() (gas: 231015)
[PASS] test_initiateNativeEthWithdrawBeforeRestaking_claimNativeEthWithdraw_transferToLRTUnstakingVault() (gas: 48672008)
[PASS] test_initiateUnstaking() (gas: 497920)
[PASS] test_maxApproveToEigenStrategyManager() (gas: 606156)
[PASS] test_receive_call() (gas: 61172)
[PASS] test_sendETHFromDepositPoolToNDC() (gas: 42576)
[PASS] test_stake32Eth() (gas: 303265)
[PASS] test_stake32EthValidated() (gas: 367825)
[PASS] test_transferBackToLRTDepositPool_ETH() (gas: 64519)
[PASS] test_transferBackToLRTDepositPool_asset() (gas: 113910)
[PASS] test_transferETHToLRTUnstakingVault() (gas: 62480)
[PASS] test_upgrade_ndc() (gas: 4330649)
Suite result: ok. 18 passed; 0 failed; 0 skipped; finished in 90.69ms (84.80ms CPU time)

Ran 17 tests for test/LRTConverter.t.sol:LRTConverterTest
[PASS] test_addConvertableAsset_removeConvertableAsset_happyPath(address) (runs: 1001, µ: 48003, ~: 47988)
[PASS] test_claimStETH() (gas: 60580)
[PASS] test_claimStETH_onlyOperator() (gas: 30632)
[PASS] test_claimSwEth() (gas: 56924)
[PASS] test_claimSwEth_onlyOperator() (gas: 30507)
[PASS] test_initialize() (gas: 17122)
[PASS] test_initialize2() (gas: 34489)
[PASS] test_initialize2_InitializeAgain() (gas: 27059)
[PASS] test_removeConvertableAsset_happyPath(address) (runs: 1001, µ: 39092, ~: 39092)
[PASS] test_swapEthToAsset_happyPath() (gas: 3720229)
[PASS] test_transferAssetFromDepositPool() (gas: 200912)
[PASS] test_transferAssetFromDepositPool_NotFromManager() (gas: 146025)
[PASS] test_transferAssetFromDepositPool_UnsupportedAsset() (gas: 116181)
[PASS] test_unstakeStETH() (gas: 73217)
[PASS] test_unstakeStETH_onlyOperator() (gas: 30551)
[PASS] test_unstakeSwETH_onlyOperator() (gas: 30530)
[PASS] test_unstakeSwEth() (gas: 71005)
Suite result: ok. 17 passed; 0 failed; 0 skipped; finished in 630.10ms (167.19ms CPU time)

Ran 11 tests for test/KelpDepositPool.t.sol:KelpDepositPoolTest
[PASS] test_getReward() (gas: 305517)
[PASS] test_initialize() (gas: 30289)
[PASS] test_notifyRewardAmount() (gas: 144892)
[PASS] test_notifyRewardAmount_onlyAdmin() (gas: 19839)
[PASS] test_setRewardsDuration() (gas: 26407)
[PASS] test_setRewardsDuration_durationNotFinished() (gas: 135810)

Page | 20

LRT – Smart Contract Updates Test Suite

[PASS] test_setRewardsDuration_onlyAdmin() (gas: 17817)
[PASS] test_stake() (gas: 259950)
[PASS] test_stake_nonZero() (gas: 166130)
[PASS] test_withdraw() (gas: 226633)
[PASS] test_withdraw_nonZero() (gas: 256712)
Suite result: ok. 11 passed; 0 failed; 0 skipped; finished in 1.02s (1.14ms CPU time)

Ran 7 tests for test/LRTUnstakingVault.t.sol:LRTUnstakingVaultTest
[PASS] testFail_receive_send_unstakingVault(uint256) (runs: 1001, µ: 33580, ~: 34132)
[PASS] testFail_receive_transfer_unstakingVault(uint256) (runs: 1001, µ: 17512, ~: 17787)
[PASS] test_addSharesUnstaking_happyPath(uint8,address,uint256) (runs: 1001, µ: 352072, ~: 353059)
[PASS] test_addSharesUnstaking_notLRTNodeDelegator(uint8,address,uint256) (runs: 1001, µ: 56954, ~: 57190)
[PASS] test_receive_call_unstakingVault(uint256) (runs: 1001, µ: 24548, ~: 24810)
[PASS] test_redeem_eth(uint256) (runs: 1001, µ: 55898, ~: 55622)
[PASS] test_redeem_token(uint256) (runs: 1001, µ: 575548, ~: 575352)
Suite result: ok. 7 passed; 0 failed; 0 skipped; finished in 878.17ms (963.87ms CPU time)

Ran 24 tests for test/LRTDepositPool.t.sol:LRTDepositPoolTest
[PASS] testFail_depositAsset_inflation_noProtection() (gas: 419213)
[PASS] test_addNodeDelegatorContractToQueue(uint256) (runs: 1000, µ: 10845892, ~: 10697095)
[PASS] test_addNodeDelegatorContractToQueue_duplicate() (gas: 113883)
[PASS] test_addNodeDelegatorContractToQueue_maximumLimitReached(address[]) (runs: 1000, µ: 62089, ~: 61954)
[PASS] test_depositAsset(uint256) (runs: 1000, µ: 448465, ~: 448465)
[PASS] test_depositAsset_inflation_protected() (gas: 403474)
[PASS] test_depositETH(uint256) (runs: 1000, µ: 253788, ~: 253788)
[PASS] test_deposit_with_node_delegator(uint256) (runs: 1000, µ: 1369219, ~: 1369219)
[PASS] test_getRsETHAmountToMint(uint8,uint256,uint256) (runs: 1001, µ: 70371, ~: 70482)
[PASS] test_getRsETHAmountToMint_depositAsset() (gas: 544798)
[PASS] test_getRsETHAmountToMint_initial() (gas: 83422)
[PASS] test_pause_unpause() (gas: 50841)
[PASS] test_removeManyNodeDelegatorContractsFromQueue() (gas: 402000)
[PASS] test_removeNodeDelegatorContractFromQueue() (gas: 361007)
[PASS] test_removeNodeDelegatorContractFromQueue_nonExistence() (gas: 309370)
[PASS] test_setMinAmountToDeposit(uint256) (runs: 1001, µ: 56345, ~: 57081)
[PASS] test_swapETHForAssetWithinDepositPool(uint256) (runs: 1000, µ: 315920, ~: 315920)
[PASS] test_transferAssetToLRTUnstakingVault() (gas: 89651)
[PASS] test_transferAssetToLRTUnstakingVault_OnlyManager() (gas: 35860)
[PASS] test_transferAssetToNodeDelegator() (gas: 1417882)
[PASS] test_transferETHToLRTUnstakingVault() (gas: 57726)
[PASS] test_transferETHToLRTUnstakingVault_OnlyManager() (gas: 35594)
[PASS] test_transferETHToNodeDelegator() (gas: 665066)
[PASS] test_updateMaxNodeDelegatorLimit(uint256) (runs: 1001, µ: 41908, ~: 42119)
Suite result: ok. 24 passed; 0 failed; 0 skipped; finished in 2.21s (4.22s CPU time)

Ran 17 tests for test/LRTWithdrawalManager.t.sol:LRTWithdrawalManagerTest
[PASS] test_initiateWithdrawal_exceedAmount(uint8,uint256,uint256) (runs: 1001, µ: 497986, ~: 501029)
[PASS] test_initiateWithdrawal_exceedAmountToWithdraw() (gas: 1559848)
[PASS] test_initiateWithdrawal_exceedsDepositAmount(uint8,uint256,uint256) (runs: 1001, µ: 328925, ~: 329170)
[PASS] test_initiateWithdrawal_happyPath(uint8,uint256,uint256) (runs: 1001, µ: 501894, ~: 504595)
[PASS] test_initiateWithdrawal_invalidAmountToWithdraw(uint8,uint256,uint256) (runs: 1001, µ: 319847, ~: 319922)
[PASS] test_initiateWithdrawal_noApproveRsETH(uint8,uint256,uint256) (runs: 1001, µ: 306082, ~: 306305)
[PASS] test_initiateWithdrawal_unlockQueue_completeWithdrawal_eth_happyPath() (gas: 48961008)
[PASS] test_initiateWithdrawal_unlockQueue_completeWithdrawal_happyPath(uint8) (runs: 1001, µ: 4049046, ~: 4049084)
[PASS] test_pause_paused() (gas: 61704)
[PASS] test_pause_unpause_happyPath() (gas: 49177)
[PASS] test_receive(uint256) (runs: 1001, µ: 22649, ~: 22870)
[PASS] test_setMinAmountToWithdraw(uint256,address) (runs: 1001, µ: 55772, ~: 56548)
[PASS] test_setWithdrawalDelayBlocks_happyPath(uint256) (runs: 1001, µ: 42606, ~: 42342)
[PASS] test_setWithdrawalDelayBlocks_tooSmall(uint256) (runs: 1001, µ: 35679, ~: 35912)
[PASS] test_unlockQueue_emptyUnstakingVault(uint8,uint256,uint256,uint256) (runs: 1001, µ: 107723, ~: 107776)
[PASS] test_unlockQueue_noPendingWithdrawals(uint8,uint256,uint256,uint256) (runs: 1001, µ: 333023, ~: 332836)
[PASS] test_unpause_notPaused() (gas: 33522)
Suite result: ok. 17 passed; 0 failed; 0 skipped; finished in 5.18s (8.26s CPU time)

Ran 16 test suites in 5.20s (10.11s CPU time): 147 tests passed, 0 failed, 0 skipped (147 total tests)

Page | 21

LRT – Smart Contract Updates Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 22

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Incorrect Accounting for stakedButUnverifiedNativeETH
	Checks-Effects-Interactions Pattern Violations In NodeDelegator
	No Checks on LST Price Oracles
	Denial-of-Service Condition in getETHEigenPodBalance() Due To Overflow
	High Churn Rate Due To Arbitrage
	Unimplemented receive() Functions in Unstaking Adapters
	Use of General receive() Functions is Discouraged
	Gas Optimisations
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

